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The diagrammatic and mathematical language of control theory

Control theorists describe interconnected systems using a diagrammatic language
of blocks and arrows. While control-theoretic block diagrams are rarely ambiguous
within the established conventions of the field, they encompass subtleties that might
differ from cosmetically similar diagrammatic languages used in other fields. This,
adapted from my graduate thesis, is a brief introduction to the diagrammatic language
of control theory, emphasizing blocks, implementation, uncertainty, and delay.

In general, a block in a control diagram describes a transfer function. The transfer
function ⌧ between an input D and an output H is an operation on D, a vector-valued
signal through time, that produces H, a vector-valued signal through time.

Figure 0.1: A transfer function from D to H.

We can write this mathematically as:

H = ⌧ (D) (1)

Typically, unless otherwise noted, ⌧ is causal, meaning that at any given time, the
present value of H depends only on past values of D and H; the future does not affect
the past.

Because ⌧ can depend on past values of both D and H, we can describe the internal
states G of ⌧ as a dynamical system with a differential equation with respect to time
C. We are almost always interested in derivatives with respect to time, so we will
typically define §G = 3G

3C
.

§G = 5 (G, C) + 6(G, C)D
H = ⌘(G)

(2)

We have now assigned to the simple block in Figure 0.1 two meanings, expressed
as Equation 1 and Equation 2. These meanings are compatible, but not equivalent.
Equation 1 expresses the input-output behavior of the system, while Equation 2 gives
us one realization of the input-output behavior. A given realization corresponds to
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exactly one input-output, but a given input-output can have multiple realizations
(infinitely many, though some are improbable). We make a further distinction in
this work between realization and implementation, which is the distinction between
a differential equation model of a system and a more complete characterization of
the physical system that the differential equation model describes.1 For example, the
elementary mathematical operation of addition in Equation 2 might be implemented
as the flows of water in and out of a tank. It might be suitable for some problems
to treat addition and subtraction of water as positively and negatively signed values
of the same term D. To build the system, or to diagnose problems in the system,
it might be necessary to treat addition and subtraction separately. This distinction
between realization and implementation is nonstandard even in control theory.

Input-output descriptions are a framework for organizing facts that we already know
and highlighting facts that we do not know; they are not models or hypotheses in the
typical scientific sense, nor designs in the typical engineering sense. However, in
the particular capacity to characterize all possible models, hypotheses, and designs
that result from given assumptions and data, input-output descriptions far exceed
implementational descriptions, and facilitate the (intuitive or systematic) generation
of testable implementational descriptions. Throughout this thesis, we will use input-
output and implementational descriptions in tandem, for instance by characterizing
one part of a larger system in implementational detail while subsuming other parts
of the system into input-output blocks.

Four special types of blocks merit particular attention. One is a controller. Con-
trollers are transfer functions, with at least one corresponding implementation, that
are designed by the scientist or engineer to test a hypothesis or achieve an engi-
neering goal. Controllers are contrasted with plants, blocks that represent extant
transfer functions in the natural or technological world. The distinction between
controller and plant, between what is designed and what is extant, is somewhat
arbitrary, depending on the question being asked. A third special type of block
that can be interconnected with other blocks is a delay block. While these look the
same as any other block, they simply pass a signal forward untransformed after a

1These distinctions are reminiscent of the Marr’s levels in neuroscience. Marr separated the
computational, algorithmic, and implementational levels of analysis, which in control-theoretic lan-
guage would be the input-output, realization, and implementation, respectively. To the reader familiar
with Marr’s levels, this work can be understood as creating a foundation by which to constrain the
implementational level with the computational level and vice versa. In control problems, the algo-
rithmic/realization level is sometimes a necessary technical intermediate, but it is not conceptually
distinct from implementation.
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time delay. Lastly, a special type of block that can be interconnected with other
blocks is an uncertainty block. Rather than representing specific transfer functions,
uncertainty blocks represent bounded sets of functions; a block diagram with an
uncertainty block in it (often expressed as a �) should be understood to represent
several possible functions, rather than just one. This set-based approach is impor-
tant when we want to understand whether a model of a system is any good: if our
decisions or conclusions about the system are narrowly dependent on the particular
parametric assumptions of a single model, we call the model (or system) fragile. If
our decisions or conclusions do not depend on particular parametric assumptions,
we call the model (or system) robust. In general, even systems that are robust to
some assumptions are fragile to others.2

A diagrammatic style that includes uncertainty and delays, spanning input-output
and implementation, is a central concern, both technically and conceptually. Dia-
grammatic descriptions are more than cartoons; they are arguments, associated with
particular mathematical structures.

Figure 0.2: Special blocks in a controller-plant interconnection: a controller (K), a
delay block (T) and an uncertainty block (�).

2The reader may wonder here if we have gone beyond technical mathematical claims into a
realm of epistemological claims. I admit that we have, but in this we are no different than any use
of mathematical tools in statistics, differential equation modeling, or machine learning in science or
engineering. These tools are compatible with everything described here.


